EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page 1 of 37 pages

10 June 2016 EMA/INS/GMP/489331/2016 GMP/GDP Inspectors Working Group

Draft

Questions and answers on production of water for injections by non-distillation methods – reverse osmosis and biofilms and control strategies

非蒸留法による注射用水の製造に係るQ&A 逆浸透とバイオフィルム、及び管理戦略

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/08/WC500211657.pdf

(2016.08.14 アクセス)

Adopted by GMP/GDP IWG	May 2016
Start of public consultation	5 August 2016
End of consultation (deadline for comments)	4 November 2016

This set of questions and answers is intended to provide preliminary guidance until such time the on-going revision of Annex I of the GMP guide is complete.

この Q&A のセットは、現在行われている GMP guide の Annex I の改定が完了するまでの、準備的 なガイダンスを提供することを目的としている。

Comments should be provided using this <u>template</u>. The completed comments form should be sent to <u>adm-gmdp@ema.europa.eu</u>______

Keywords :	Water for Injections, reverse osmosis, Biofilms, Control strategies	
	注射用水、逆浸透圧、バイオフィルム、管理戦略	

訳者による参考: ISPE が 2011 に報告した非蒸留法のアンケート調査結果が報告されている。 http://www.ispe.org/pe_nd11/bevilacqua.pdf (2016 年 08 月 14 日アクセス)_

EMA(案) 非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)

deadline for comments: 4 November 2016

Page 2 of 37 pages

目 次

Introduction (はじめに)
Part I Production of wfi by non-distillation methods – reverse osmosis 非蒸留法による WFI の製造 – 逆浸透5
1. The monograph requires that notice is given to the supervisory authority of the manufacturer before
implementation. Who is the supervisory authority? WFI の各条は、非蒸留法を行う前に、製薬業者が
所管当局に通知をすることを要求している。その所管当局とは、どの組織を指すのか?
2. What are the main concerns around the use of reverse osmosis to manufacture WFI?
WFI を製造するための逆浸透の使用に係わる最大の懸念とは何か?
3. What are the main elements that should be considered in the design of such a system?
システムの設計で考慮すべき重要な要素はどの様なものか?7
4. What approach should be considered for the qualification of such a system?
WFI 製造システムの適格性評価には、どの様なアプローチを考えるべきか?
5. What type of sampling regime should be employed during qualification and during operation?
適格性評価中、および日常的運転中に、どのようなタイプのサンプリング体制を用いるべきか?18
6. What testing should be employed during initial qualification and routine operation sampling?
初期の適格性評価と日常的運転のサンプリング中に、どの様な試験を行うべきか?19
7. What are the expectations for preventative maintenance on RO systems used for the production of WFI?
WFI の製造に使用する RO システムの予防的保全についての期待はどの様なものか?
Part II Biofilms and control strategies (バイオフィルムと管理戦略)
1. What is a biofilm? (バイオフィルムとは何か?)24
2. What approach should be taken to maintain control over systems which can be affected by biofilms?
システム全体にわたって、バイオフィルムに影響を与えられるような制御を維持するたためには、どの様な
アプローチをとるべきか?
3. What is a control strategy in the context of biofilm and contamination control?
3. What is a control strategy in the context of biofilm and contamination control? バイオフィルムと汚染制御の関連付における管理戦略とは、どの様なものか?
バイオフィルムと汚染制御の関連付における管理戦略とは、どの様なものか?
バイオフィルムと汚染制御の関連付における管理戦略とは、どの様なものか?
バイオフィルムと汚染制御の関連付における管理戦略とは、どの様なものか?
 バイオフィルムと汚染制御の関連付における管理戦略とは、どの様なものか?
 バイオフィルムと汚染制御の関連付における管理戦略とは、どの様なものか?

EMA (案)非蒸留法による注射用水の製造に係るQ&A (逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page 3 of 37 pages

Introduction (はじめに)

Following discussions over the last 2-3 years around the revision of the European Pharmacopoeia (Ph. Eur.) Water for Injections (WFI) monograph (0169), the Water Working Party concluded that there was evidence to support a revision of the monograph, which proposes to take account of current manufacturing practices using methods other than distillation for producing water of injectable quality.

欧州薬局方 (European Pharmacopoeia; Ph. Eur.)の Water for Injections (WFI) 各条 (0169)の改定についての最近 の2~3年間の議論の後に、Water Working Party (製薬用水作業部会)は、当該各条の改定を裏付ける証 拠が存在すると結論付けた。この改定というのは、water of injectable (注射用の水)の品質を製造するため に、蒸留法以外の方法を使用するという、最新の製造規範を考慮することを目的としている。

The Ph.Eur. monograph (Monograph 169) was revised to include, in addition to distillation, reverse osmosis (RO) coupled with suitable techniques, for the production of WFI.

この欧州薬局方各条(各条 169)は、WFIの製造を蒸留に加えて、適切な技術と組み合わせた逆浸透(reverse osmosis ; RO)を加えるという規則改定が行われた。

WFI monograph 169 states: (WFI の各条 169 は、次のように述べている。:)

Production (製造)

Water for injections in bulk is obtained from water that complies with the regulations on water intended for human consumption laid down by the competent authority or from purified water. It is produced either:

Water for injections in bulk (バルク形態の注射用水) は、関係当局が規制をしたヒト用の水の規則に適合 する水か、あるいは purified water (精製水) から得られる。

• by distillation in an apparatus of which the parts in contact with the water are of neutral glass, quartz or a suitable metal and which is fitted with an effective device to prevent the entrainment of droplets; or

蒸留によって製造する場合には、その装置 (apparatus) が水と接触する部分は、無色のガラス (neutral glass)、石英 (quartz) あるいは適切な金属からなり、かつ飛沫同伴 (entrainment of droplets) を防ぐための有効な器具を備えた装置であること。

• by a purification process that is equivalent to distillation. Reverse osmosis, which may be single-pass or double-pass, coupled with other appropriate techniques such as electro-deionisation, ultrafiltration or nanofiltration, is suitable. Notice is given to the supervisory authority of the manufacturer before implementation.

蒸留と同等である精製プロセスによる場合には。逆浸透 (reverse osmosis) が適切な方法であ り、その装置は、電気的脱イオン (electro-deionisation; 訳注 いわゆる EDI)、限外ろ過 (ultrafiltration; 訳注 いわゆる UF ろ過) あるいはナノろ過 (nanofiltration) と組み合わせた、single-pass (訳注:一段 式) あるいは double-pass (訳注:直列二段式) が適切なものであろう。(訳注:この方法による場合は) その実施前に、製造業者は当局への通知を行うこと。

For all methods of production, correct operation monitoring and maintenance of the system are essential. In order to ensure the appropriate quality of the water, validated procedures, in-process monitoring of the electrical conductivity, and regular monitoring of total organic carbon and microbial contamination are applied.

(訳注:WFIを) 製造する全ての方法に対して、当該システムの正しい運転のモニタリングと維持は、 必須の事項である。その水(the water:訳注 WFIを指しており、以下の訳文では基本的に"WFI"の用語を使用した) の適正な品質を保証するために、バリデートされた手順、導電率(electrical conductivity)、および「全有 機性炭素(total organic carbon)と微生物汚染の定期的モニタリング」を行う。

The first portion of water obtained when the system begins to function is discarded.

そのシステムが機能を開始し始めた最初の時点で得られた(訳注: WFI の) 部分は、廃棄する(訳注: 運転開始直後の初めの部分はブローする)。

Water for injections in bulk is stored and distributed in conditions designed to prevent growth of micro-organisms and to avoid any other contamination.

WFI のバルク水は、微生物の増殖を防ぎ、かつ他の汚染が避けられるように設計された条件の下で貯留し、分配を行う。

The purpose of these Questions and Answers is to provide clarification and guidance in relation to the use of reverse osmosis in the manufacture of Water for Injection (Part I) and also to provide more detailed guidance on the control of Biofilms (Part II).

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page 5 of 37 pages

ここに掲げた Questions and Answers の目的は、次のことを提供するためである。

- Part I : 注射用水の製造における逆浸透の使用に関する事項を明瞭化させると共に、 ガイダンスを提供すること。及び
- ・Part II : Biofilms の制御に関してのより詳細なガイダンスを提供すること。

Part I Production of wfi by non-distillation methods – reverse osmosis 非蒸留法による WFI の製造 – 逆浸透

1. The monograph requires that notice is given to the supervisory authority of the manufacturer before implementation. Who is the supervisory authority?

(訳注:欧州薬局方の)WFIの各条は、非蒸留法を行う前に、製薬業者が所管当局に通知をすることを要求している。その所管当局とは、どの組織を指すのか?

For a manufacturing site located in the European Union the supervisory authority is the relevant competent authority responsible for GMP oversight in the Member State concerned.

欧州連合域内に所在する製造所に対しては、その所管当局は、該当するメンバー国の GMP 監視に責 任を有する関係当局である。

For a manufacturing site located in a third country engaged in the manufacture of medicinal products (produced using WFI) which are exported to the European Union, it is the relevant competent authority responsible for GMP oversight in the Member State of the importer in the European Union. If affected products are exported directly to more than one Member State of the European Union, any one of the respective supervisory authorities should be notified. Notification to EU authorities is without prejudice to any similar obligation the manufacturer might have towards the relevant authorities of the country in which it is located.

欧州連合に輸出する医薬品(WFIを使用して製造した医薬品)の製造に係る第三国に所在する製造所 に関しては、欧州連合における輸入業者のメンバー国において、GMP 監視に責任を有する関係所管 当局である。もし(訳注: 非蒸留法による WFIを使用することで)影響を受ける製剤が、1 ケ国を超える欧州連 合のメンバー国に直接に輸出されているのであれば、その関連する所管当局の何れか一つに通知をす べきである。製造業者は、製造所が所在する国の関係当局に向けと同様な(通知)義務が(訳注: その

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page 6 of 37 pages

製造所のある国の規制当局にも通知義務)あるだろうとの先入観を持つことなく、EU当局への通知を行う。

By analogy for the sole purpose of this guidance, a manufacturing site located in a third country engaged in the manufacture of medicinal products (produced using WFI) which are exported to the European Union and where a Mutual Recognition Agreement, or equivalent agreement exists between the country concerned and the European Union and the affected products are within the operational scope of the agreement, it is the relevant competent authority responsible for GMP oversight in the country concerned.

(訳者注:この段落は文章が複雑で翻訳が出来なかった。とりあえず推測の訳文を挿入する)

このガイダンスの唯一の目的に関しての類推により、次の事項の全てに該当する製造所は、その届け 出先が、製造所が関わる当該国の GMP 監視に責任を有する関係規制当局となる。

- ・第三国に位置し、WFIを使用して医薬品の製造に従事している
- ・その医薬品を欧州連合 (European Union) に輸出している
- 相互認証協定 (Mutual Recognition Agreement) あるいはそれと同等の協定が、
 その国と欧州連合の間に存在する
- ・その影響を受ける (訳注: WFI を使用する) 医薬品は、上記協定の運営範囲内にある

2. What are the main concerns around the use of reverse osmosis to manufacture WFI? WFI を製造するための逆浸透の使用に係わる最大の懸念とは何か?

The main concerns around the use of non-distillation methods – Reverse Osmosis, for the manufacture of WFI relate to the microbiological quality of the water produced as well as the control mechanisms in place to minimise the risks associated with microbiological proliferation and/or by-products throughout such a system which is not easily detected.

WFIの製造に非蒸留法(逆浸透)を使用することの主たる懸念は、製造したWFIの微生物学的品質に関係する事項である。それらと共に、システムの容易に検出できない箇所に、「微生物学的な増殖」 及び/又は「副産物(by-products; *)」が存在することのリスクを最小とするための管理メカニズ ムも同様に重要である。

*: 訳注 代謝物もさることながら細菌細胞が死滅することによる種々の物質、特に細胞残屑およびエンドトキシンであろう

RO systems typically operate at ambient temperatures and as such offer an ideal environment for

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page 7 of 37 pages

the formation of a biofilm. Biofilms are notoriously difficult to remove, because they protect flora contained within against the action of shear forces and disinfection chemicals. In addition, incompletely removed biofilms lead to a rapid regrowth and proliferation as well as increasing the likelihood of microbiological by-products throughout a system.

RO システムは一般的に環境温度 (ambient temperatures) で運転される。それは、バイオフィルムの形成に とって、理想的な環境を提供するものである。バイオフィルムは、除去が困難であることで悪名高い ものである。というのは、バイオフィルム (*) は、剪断力 (shear forces) や消毒剤 (disinfection chemicals) という作用に対して、その内部に含まれる微生物相 (flora) を保護するからである。更に、不完全な除 去を受けたバイフィルムは、(訳注: WFIの) システム内への微生物学的副産物などの増大は勿論のこと、 急速な再成長 (regrowth) と増殖 (proliferation) を起こす。

*:訳注 バイオフィルムの詳細に関しては、Part IIの訳注を参照のこと。

3. What are the main elements that should be considered in the design of such a system? システムの設計で考慮すべき重要な要素はどの様なものか?

The system design should be in such a manner as to minimise the risk of microbiological contamination and proliferation.

WFI 製造システムの設計は、微生物の汚染と増殖のリスクを最小とするような方法とすべきである。

Control Strategy(管理戦略):

A robust control strategy should be developed in parallel with the design considerations. The control strategy should take account of the risks involved in the use of RO to manufacture WFI, the measures to be taken to address those risks and additionally the various control measures required to be implemented in order to provide adequate assurance of the water quality, or that the specific control measures in place are designed in order to enable identification of any issues which may impact the quality of the water produced.

その設計面での考慮と並行させて、頑健性のある管理戦略を制定すべきである。管理戦略は、以下 の事項を考慮すべきである。:

・WFIを製造するために RO を使用することに伴うリスク

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page8 of 37 pages

- ・それらのリスクに対処すべき方策、および WFI の品質に関しての適切な保証を与えるために 実行することが必要となる各種の追加的な管理の方策 あるいは
- ・製造したWFIの品質にインパクトを及ぼすかも知れない如何なる事項の特定も可能とするために、 設置されている状態 (in place) での管理方策を設計する。

Additionally, the potential for biofilm formation should be appropriately assessed and measures put in place to minimise the formation of biofilms within a system. See section 2 - Biofilm control strategy.

更に、バイオフィルム形成の可能性を適切にアセスメントをすべきであり、WFI 製造システム内の バイオフィルムの形成を最小化するための方策を導入すべきである。 Section 2 – Biofilm control strategy を参照のこと。

Materials of construct (WFI 製造装置の構成材質):

The materials of construct for the generation and distribution systems must not be reactive, additive or absorptive to such an extent that it will affect the quality of water produced.

WFIの製造 (generation) および分配システムの構成材質は、製造した WFI の品質に影響を与えるレベルの反応性、添加性 (additive: 訳注 溶出性を指すと思われる)、あるいは吸着性を持ってはならない (must)。

The distribution and storage systems should be designed as to permit routine steam sanitisation along with routine chemical sanitisation and in accordance with other good design practice to minimise areas of reduced flow.

分配および貯留システムは、以下の事項を考慮して、設計すべきである。

- 日常的な化学的サニタイゼーションに加えて、日常的な蒸気による サニタイゼーションも可能とする。
- ② その他の good design practice に従って、流速が減少する区域を最小とする。

Pre-treatment (前処理):

Microorganisms entering an RO system encounter a large membrane surface where the dissolved organic nutrients of the water are concentrated. Therefore the quality of water entering the system is critical. Appropriate pre-treatment is necessary to:

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page 9 of 37 pages

RO システムに入ってきた微生物は、メンブランという非常に大きな面積持つ表面に遭遇する。この 表面には WFI 中に溶解している有機物が濃縮された形で存在している。それゆえ、その WFI 製造 システムに入ってくる水の品質は、非常に重要 (critical) である。以下の事項のように、適切な前処理 が必要である。

• Ensure adequate removal of organic particles and microbiological impurities – Use of ozone should be considered as it is a powerful antioxidant that controls microbial growth and reduces the concentration of organics due to oxidation. Its use requires compatible materials of construction for the water system.

有機性の粒子 (organic particles) 及び微生物学的な不純物 (microbiological impurities : 訳注 死滅した微生物細胞の _{残屑などか?})の適切な除去を確実なものとする。 – オゾンの使用を考慮すべきである。とい うのは、オゾンは、微生物の生長を制御し、酸化によって有機物の濃度を減少させるという、強 力な抗酸化剤 (antioxidant;*) である。

- *:(訳注) オゾンは強力な酸化作用を持つので、酸化剤であると思われる。しかしネットで調べると、医療関係ではオゾン は抗酸化作用を示すとある。この文章は、今後、修正されるか、あるいは補足説明がされる可能性が大きいと思われる。
- Control of scaling usually controlled by use of ion exchange upstream of the membrane スケール沈着の制御 – 通常、そのメンブランの上流側に位置するイオン交換の 使用によって、この沈着を制御する。
- Control of fouling use of depth or media filtration is typically employed and is often the first step in a pre-treatment system

付着物の制御 — デプス型のろ過、あるいはメディアろ過 (media filtration; 訳注 砂ろ過などを指す と思われる) が一般的に使用され、しばしば、それらは前処理段階の最初のステップである。

 Removal of microbial control agents – Chlorine can cause degradation of the membranes and its removal is necessary – typically removed during the latter stages of pre-treatment as its antimicrobial properties aid with minimising microbial proliferation throughout the pre-treatment stages

微生物制御剤(microbial control agents)の除去 – 塩素はメンブラン(訳注: ROメンブランを指すと考え られる)の劣化の原因となるので、その除去が必要となる。一般的に、これは前処理の最後の段階 で除去される。これは、その抗菌性を、前処理段階中での微生物の増殖を最小化するための助け

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page10 of 37 pages

とするためである。

 Residual free chlorine can be reduced by activated carbon or chemical reducing agents such as sodium metabisulfite (SMBS) commonly used for removal of free chlorine and as a biostatic. Residual free chlorine can be detected with oxidant-reduction potential electrodes (ORP). Other oxidizing agents such as chlorine dioxide, hydrogen peroxide, ozone, and permanganate are capable of damaging RO membranes also if not used properly.

残留している遊離塩素は、活性炭により減少させることが出来るが、メタ重亜硫酸ナトリウム (sodium metabisulfite; SMBS)のような化学的な減少剤(chemical reducing agents)も使用できる。SMBSは、 遊離塩素および静菌剤(biostatic)の除去に一般的に使用される。残留している遊離塩素は、 oxidant-reduction potential electrodes (ORP)(*)で検出することが出来る。二酸化塩素(chlorine dioxide)、 過酸化水素(hydrogen peroxide)、オゾン(ozone)及びパームグネイト(permanganate; 過マンガン酸塩)のよう なその他の酸化剤もまた、それを正しく使用しなければ、ROメンブランにダメッジ(損傷)を 与えてしまう。

 *:(訳注)前後関係からみて「酸化還元電極」の意味と思われるが、一般的には「酸化還元電位」は、"Redox potential" ある いは "Oxidation-reduction Potential; ORP"と表現されるので、原文の単語を挿入した。

Pre-treatment of water is essential in order to minimise the impact to the RO membranes. Techniques such as deionisation, water softening, descaling, pre filtration, degasification (can be located between the stages of a double pass RO system), nanofiltation, electro-deionisation, ozonation, UV treatment and micro-filtration should all be considered during the design phase to assure the quality of the water produced.

RO メンブランへのインパクトを最も少なくするために、水 (訳注: 原水) の前処理は必須の事項である。製造した WFI の品質を保証するために、設計段階において、次のような技術を考慮すべきである。:

脱イオン (deionisation) 、 軟水化 (water softening) 、 スケール除去 (descaling) 、前ろ過 (pre filtration) 、 脱気 (degasification) (直列二段 RO システム (double pass RO system) の、この2つの段階の間に位置さ せる) 、 ナノろ過 (nanofiltation) 、 電気式脱イオン (electro-deionisation) 、 オゾン化 (ozonation) 、 紫 外線照射 (UV treatment) 、 及び マイクロろ過 (micro-filtration)。

Pre-treatment is necessary to ensure that the feed water will be of an adequate quality to feed to a final treatment step, thereby protecting the membrane, minimising membrane degradation and aid with minimising the risks associated with microbiological proliferation and biofilm

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016PagePage11 of 37 pages

formation.

前処理は、以下の事項を保証するために必要である。:

- ・原水 (feed water) が最終的な処理段階への供給に適切な品質を持つようにするため
- ・それによって (訳注: RO の) メンブランを保護し、メンブランの劣化を最小限のものとし、そして 微生物の増殖とバイオフィルム形成に関連するリスクを最小化することを助けるため

The quality of RO feed water should be monitored.

ROへの供給水の品質は、モニターすべきである。

RO Membranes (RO $\checkmark \lor \lor \lor \lor)$:

RO membranes should be robust enough to permit routine high temperature sanitisation along with routine chemical sanitisation. RO membrane development must also be taken into consideration and where such evolution of membrane resistance permits, higher temperatures (>120°C), pressures and a more harsh chemical sanitisation regime must be applied. Systems should be designed to allow for such changes to be implemented.

RO メンブランは、日常的な化学的なサニティゼ―ションと共に、日常的な高温度でのサニティゼ―ションを可能とするだけの、十分な頑健性を持つべきである。RO メンブランの開発は、十分な考慮を以って行わなければならず (must)、RO メンブランの抵抗性のそのような進化が可能な場合は、より高温度 (>120℃)で、より圧力が高く、かつ、より過酷な化学的サニティゼーション管理を適用する。システムは、そのようなチャレンジが行えるように設計すべきである。

Systems should be in place to test membranes routinely for any potential integrity breaches that could lead to a significant contamination event.

システムは、如何なる可能性のある完全性の破たんに関しても、日常的にメンブランの試験をする ことに適切なものとすべきである。そのような完全性の破たんは、重大な汚染の事態を招くかも知 れない。

Use of Double pass RO membranes should be considered as an added assurance of the maintenance of the quality of the water produced.

製造する WFI の品質の追加的保証として、直列に二段の RO メンブラン (Double pass RO membranes)の使用を考慮すべきである。

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016PagePage12 of 37 pages

Additional techniques to be considered (考慮すべき追加的事項)

Coupled with these further techniques post RO membrane should be considered such as nanofiltration, electro-deionisation and ultra-filtration (known to have an endotoxin reducing capability).

RO メンブランの後段(訳注: 水が RO メンブランを通過した後の下流側)において、更なる技術的方法の組合 せを考慮すべきである。そのような技術として、ナノろ過 (nanofiltration)、電気的イオン交換 (electro-deionisation)、及び(エンドトキシンの低減効果を持つ)限外ろ過 (ultra-filtration)のような技術が ある。

Microfiltration(MF)/ultrafiltration(UF) offers advantages in that it can remove microorganisms, which are sometimes very difficult to remove by standard techniques. The MF/UF membranes should be made from a chlorine-resistant material to withstand periodic sanitisation.

マイクロろ過 (Microfiltration; MF) /限外ろ過 (ultrafiltration; UF)は、標準的な方法での除去が、しばしば 非常に困難である微生物を除去できるという、長所をもたらす。MF/UF メンブランは、定期的な サニティゼーションに耐えられるようにするために、塩素に抵抗性を持つ材質からつくられるべき である。

Total Organic Carbon (TOC) (全有機炭素):

On-line TOC meters must be employed as a prerequisite to the control strategy and located at various positions within the RO water system. The location of on-line TOC should be based on risk assessment. Locations to consider:

オンラインの TOC 計を管理戦略の要件として使用しなければならず、かつこの TOC 計は、RO 水 システムの様々な場所に設置しなければならない。オンライン TOC 計の設置位置は、リスクアセス メントに基づくべきである。その設置位置は、次の様な点を考慮する。:

• Feed water monitoring – assess for seasonal or unanticipated quality changes that could negatively impact the pre-treatment system capabilities or cause a significant increase in membrane fouling

原水のモニタリング – 原水の季節変動、あるいは想定外の品質変動をアセスメントする。

これらは、前処理システムの能力にマイナスのインパクトを与えるかも知れず、またメンブラン の汚れの重大な増加の原因となるかも知れしれない。

• Monitoring downstream of pre-treatment – can aid with verification of satisfactory equipment operation and aid as an advanced warning of degradation of the pre-treatment systems

前処理の下流側のモニタリング – これは機器運転状態が満足のゆく状態にあるかの確認 を助けとなり、そして、前処理システムの劣化のより速い警鐘 (advanced warning) の助けともなる

• Monitoring post RO membrane and UV lights – can aid with detection of compromised membranes or the need for UV lamp replacement

ROメンブラン通過後及びUV ラインプのモニタリング – 性能的に危くなった(compromised) メンブランの検出や、UV ランプの交換の必要性を検出する助けとなる。

• Monitoring post final treatment step to verify acceptable water quality prior to delivery to the storage tank. TOC meters are often located on the return loop of the distribution system, prior to recirculation back to the storage tank.

最終処理段階後のモニタリング。これは貯留タンクへの送水前のWFIの品質が許容されるもの であることを確認するために行うものである。TOC計は、しばしば、送水システムのリターン・ ループの部分、つまり貯留タンクへの戻る循環の前の箇所に設置される。

System design should be such that there is an automated diversion through a recirculation system back through the pre-treatment process and final purification equipment when the quality of the water produced is outside the acceptable limits this should also result in reporting under the Pharmaceutical Quality System so that the frequency of such excursions can be monitored and also the root cause investigated appropriately.

システムの設計は、製造した WFI の品質が許容規格外になった場合に、(訳注:その規格外となった水を) 前処理プロセスおよび最終精製装置へと戻せるように、循環システムを通して自動的な迂回路を持 つようにすべきである。また、そのような場合には、医薬品品質システム (Pharmaceutical Quality System) の下での報告も行えるようにすべきである。そのような一過的逸脱 (excursions) の頻度がモニターす ることが出来て、また、根本原因調査を適切に行えるようにする。

When on-line TOC systems fail, robust corrective measures should be put in place that will assure the ongoing quality of the water produced.

オンライン TOC システムが故障した場合でも、製造した WFI の品質が継続的に保証されるような、 頑健性のある是正の方策が行えるようにすべきである。

Appropriate alert limits should be established based on the data generated during the system performance throughout the qualification phases and commensurate with operating capabilities of the system. Alerts should be reassessed routinely to enable, where possible, a tightening of those control limits. Increasing of such limits is not good practice and may mask a failing system.

適格性評価段階 (qualification phases) でのシステム性能評価中に得られたデータに基づき、適切なアラー ト限度値を確立し、そのシステムの運転能力を補うべきである。アラート限度値は可能であれば、 日常的に再アセスメントを行い、その管理幅を狭めるべきである。その限度値を広げるようなこと は、良いやり方ではなく、良好でないシステムを見えなく(マスク)するものであろう。

Conductivity (導電率)

On-line conductivity meters must be utilised as a prerequisite to the control strategy and be installed at various locations within the RO system. The location of these meters should take account of the locations specified above under TOC but should also consider the monitoring of RO concentrate and permeate in order to aid with determination and trending of percentage rejection from the system in operation. Changes in rejection percentages can be an indication of membrane failure, seal failure, improper pH, feed pressure issues and increased scaling or fouling.

オンラインの導電率計を、管理戦略に必須なものとして利用しなければならない(must)。そしてそれは、ROシステム内の各所に設置しなければならない。それらの計器の位置は、上記 TOC の項に規定した位置を考慮するだけではなく、RO での濃縮物のモニタリング、及び運転中のシステムからの廃棄の百分率(percentage rejection: 訳注 何に対する "rejection"であるかは要検討。RO 濃縮物にも規格を設けて、それを 測定するのか?)の測定と、トレンドの分析を助けるように計器を配置すべきである。廃棄の百分率の変化は、メンブランの欠損 (membrane failure)、シール不全 (seal failure)、不適切なpH (improper pH)、供給 圧力の問題 (feed pressure issues)、及びスケーリング、あるいは汚れの増大 (increased scaling or fouling)の指標 とすることが出来る。

訳文には必ず、誤訳、誤謬そしてタイプミスがあります。訳文は原文を理解するための補助的な ものです。この資料に関して、判断や行動をする場合は、必ず原文に基づいて行って下さい。

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page15 of 37 pages

Trend data should be reviewed routinely in order to determine the potential for deterioration in the system.

そのシステムの劣化の可能性を調べるために、トレンド・データは日常的にレビューすべきである。

When on-line conductivity systems fail, robust corrective measures should be put in place that will assure the ongoing quality of the water produced.

オンライン導電率システムが故障した場合、製造した WFI の品質が継続的の保証されるような、適切な是正措置をとるべきである。

The system should be designed to allow for routine sanitisation. The frequency should be determined based on risk assessment and on the data gathered during the qualification of the system.

システムは、日常的なサニティゼーションが可能なように設計すべである。リスクアセスメントに 基づき、そして当該システムの適格性評価中に収集されたデータに基づき、サニティゼーションの 頻度を決定すべきである。

Monitoring of the flora in the system should be considered to allow adaptation of the sanitisation procedure, based on the resistance of the concerned microorganisms.

懸念される微生物の抵抗性に基づいて、サニテーションの方法の選択が可能となるように、当該シ ステムの菌相(flora)のモニタリングを考慮すべきである。

The system should be pressure rated to enable routine steam sanitisation throughout the distribution loop and storage tanks. The RO membranes are currently not designed to withstand pressurised steam, but those that are capable of withstanding high temperatures are available and should be utilised in order to allow for routine high temperature flush through of the system in conjunction with routine chemical sanitisation.

システムは、分配ループ (distribution loop) 及び貯留タンク (storage tanks) を通して、日常的な蒸気による サニテーションが可能となるような公称の耐圧性を持つべきである (should be pressure rated to)。ROメン ブランは現時点では加圧蒸気に耐えられるように設計されていないが、高温度に耐えるメンブラン

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page16 of 37 pages

の入手は可能であり、日常的な化学的なサニティゼーションと組み合わせて、そのシステムの日常 的高温フラッシュ (routine high temperature flush) が可能となるように使用すべきである。

Use of the following chemical sanitising agents should be considered as part of the control strategy:

以下に掲げる化学的サニタイジング剤の使用を、管理戦略の一部として考えるべきである。:

- Peracetic acid (過酢酸)
- Sodium Hypochlorite (次亜塩素酸ナトリウム)
- Hydrogen Peroxide (過酸化水素)

Appropriate contact times need to be established.

適切な接触時間を確立する必要がある。

Use of Ozonation should also be incorporated into the design of such a system. Ozone is an even stronger oxidizing agent than chlorine and it decomposes readily. The resistance of the materials of construction against ozone must be considered. Usually, stainless steel is employed; it is unlikely that a distribution system with non-stainless steel components would be acceptable. Ozone can eliminate a wide variety of inorganic and organic materials and aid with maintaining an appropriate level of microbiological control.

オゾン化の使用も、そのようなシステムの設計に組み込むべきである。オゾンは一様性を持つ強力 な酸化剤 (even stronger oxidizing agent) であり、それは塩素よりも強く、かつ容易に分解する。オゾンに対 する装置の構成材質の抵抗性を考慮しなければならない。通常、ステンレススチールが使用される。: それは、ステンレススチール以外の構成材料を持つ分配システムが許容されるとは考えられない。 オゾンは、広い範囲の無機物および有機物を取り除くことが出来るものであり、適切なレベルの微 生物学的な制御を維持する上での助けとなる。

De-ozonation must be performed carefully to protect the membranes. Ultraviolet irradiation is typically utilised for this purpose.

RO メンブランを保護するために、オゾン化の除去 (de-ozonation) は、注意深く行わなければならない。 この目的のためには、一般的に UV 照射が利用される。

EMA (案)非蒸留法による注射用水の製造に係るQ&A (逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016PagePage17 of 37 pages

4. What approach should be considered for the qualification of such a system? WFI 製造システムの適格性評価には、どの様なアプローチを考えるべきか?

The approach to system commissioning and qualification should follow good engineering practice. The approach should be developed to provide the necessary evidence that the design of the water system is in line with that intended in order to assure the quality of the water produced during routine operation.

システムのコミッショニングおよび適格性評価に対するアプローチは、GEP (good engineering practice) に 従うべきである。そのアプローチは、水システムの設計が、日常的運転中に製造される水の品質を 保証するという目的に一致させることの、必要な証拠を与えられるようにすべきである。

Performance of the system must be proven over an extended period of time and the sampling programme employed must be sufficiently robust to take account of this.

当該システムの性能は、長期間にわたって (over an extended period of time) 立証しなければならず、かつ使用するサンプリング・プログラムは、このことを考慮した十分に頑健性のあるものでなければならない (must)。

The initial validation period of the water system where testing is carried out on all points should be extended to build confidence that the system is operating as designed.

当該WFI システムの最初のバリデーション期間は、全ての箇所 (all points) について試験を行うべき である。これは、そのシステムが設計したように運転できるという信頼を確立するために行うもの である。

Similarly, subsequent phases of system validation should be robust and capture significant data to verify ongoing capability of the system.

同様に、当該システムのバリデーションの後に続く段階は、頑健性を持たせるべきであり、そのシ ステムの継続的能力 (ongoing capability) を確認するための、大きな影響を与えるデータを獲得すべきで ある。

訳文には必ず、誤訳、誤謬そしてタイプミスがあります。訳文は原文を理解するための補助的な ものです。この資料に関して、判断や行動をする場合は、必ず原文に基づいて行って下さい。

EMA(案) 非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)

deadline for comments: 4 November 2016

Page 18 of 37 pages

5. What type of sampling regime should be employed during qualification and during operation?

適格性評価中、および日常的運転中に、どのようなタイプのサンプリング体制を用いるべきか?

The sampling regime during the initial stages of qualification should take account of the critical points within the system. Such locations to consider include:

適格性評価の最初の段階(initial stages)は、その製薬用水システムの重要箇所(critical points)を考慮 すべきである。そのような考慮すべき箇所は、次の箇所が含まれる。:

• Feed / raw water source	(原水の水源)
• Stages of pre-treatment	(前処理段階)
• Pre and post RO membrane	(RO メンブランの前後)
• Post final purification phase	(最終精製段階の後)
• Storage tank	(貯留タンク)
• All user points	(全てのユースポイント)
• Return loop post final user point	(最後のユースポイントの下流側のリターン・ループ)

Typically during initial phase, qualification testing of all of the above points should be sampled and tested daily for a specified period of time in order to assure the correct installation and operation of the system.

一般的に、イニシャル段階では、上述の箇所の全ての適格性評価を毎日サンプリングし、それを 試験すべきである。これは、当該システムの据付け (installation) と運転 (operation) が正しいことを保 証できる期間にわたって行うべきである。

The next phase of sampling should also take account the above locations. The sampling frequency should be designed in a manner to assure satisfactory performance of the system over an extended period of time. Typically this is conducted over a year to take account of, for example, seasonal variations associated with feed water supply.

次の段階のサンプリングは、上述の場所についての試験結果の報告もまた考慮に入れて行うべき である。サンプリングの頻度は、(訳注: イニシャルの段階よりも?)長い期間にわたって、そのシステム の満足行く性能を保証する方法でデザインをすべきである。この期間は、一般的に一年間にわた って行われる。これは供給原水 (feed water supply)の季節変動 (seasonal variations) と関連している。

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page19 of 37 pages

訳注:ここに説明している製薬用水設備の初期の適格性評価は、一般的に見られる3段階評価(Phase I から III) ではなく、 Phase II をスキップした2段階評価をとっている点が注目される。

During routine operation the sampling regime (frequency and locations) should be designed in a manner to assure satisfactory continued performance of the system and ultimately assure the quality of the water produced.

日常的な運転中のサンプリング体制(測定の頻度 及び 箇所)は、システムの性能が連続的に満 足していることを保証するように、そして最終的には、製造した WFI の品質が保証される方法と なるように設計すべきである。

Daily sampling of the system should be employed for all user points utilised on the day, the return loop as well as consideration of inclusion of points both pre and post the RO membranes.

このシステムの日常的サンプリングは、ROメンブランの前後の両方の箇所を含めることを考えるのは勿論であるが、その日に使用する全てのユースポイントを対象とすべきである。

訳注:この文章は、EMAが ROメンブランにおけるバイオフィルム形成を非常に懸念していることを示している。

Volumes sampled for microbiological monitoring should be justified and commensurate to test requirements.

微生物学的モニタリング用に採取するサンプル量は、その正当性を論証し、かつその試験要求に 釣り合ったものとすべきである。

6. What testing should be employed during initial qualification and routine operation sampling?

初期の適格性評価と日常的運転のサンプリング中に、どの様な試験を行うべきか?

Testing should be conducted in line with Ph.Eur. Monograph 169 'Water for Injections'. Use of rapid microbiological methods should be employed as a prerequisite to the control strategy to aid with rapid responses to deterioration of the system.

EMA (案)非蒸留法による注射用水の製造に係るQ&A (逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page20 of 37 pages

試験は欧州薬局方の各条 (Ph.Eur. Monograph) の 169 の'Water for Injections' (注射用水) に従って行う べきである。その製薬用水システムの劣化が生じた場合の早い対応を助けるための管理戦略の前 提として、迅速微生物学的方法を使用すべきである。

Article 23 of Directive 2001/83/EC states:

• "...the authorisation holder must, in respect of the methods of manufacture and control...take account of scientific and technical progress..."

Directive 2001/83/EC の Article 23 は、次のように述べている。:

・ "製造承認保持者 (authorisation holder) は、製造及び管理の方法に関して、・・・科学的及 び技術的な進展を考慮して・・・"

Methods to be considered should include (考慮すべき方法が次のものが含まれる):

- Rapid Endotoxin testing use of more sensitive and point of use test methods 迅速エンドトキシン試験 – より高感度で、使用点 (訳注:採水したその場での) 試験法の使用
- Quantitative microbiological test methods in line with Ph.Eur. 5.1.6 monograph 'Alternative Methods for control of Microbiological Quality'. 定量的迅速微生物学的試験方法 – 欧州薬局方 (Ph.Eur.)の各条 5.1.6 'Alternative Methods for control of Microbiological Quality' (微生物学的品質の管理のための変法).

Due consideration should be given to employing alternate methods for the rapid quantitative determination of the contamination levels existing within the water system. The validation of such system should be in line with the above referenced monograph.

製薬用水システム内に存在する汚染レベルの迅速な定量的測定のために、変法 (alternate methods)を使用することは、当然の考慮事項である。そのような変法のバリデーションは、上記に引用した欧州 薬局方各条と整合させるべきである。

Use of alternative/ rapid microbiological test methods should be employed as part of the overall control strategy for the system.

当該システムの全体的管理戦略の一部として、変法/迅速微生物学的試験方法の使用を行うべきで ある。

Appropriate alert limits should be established based on statistical analysis of data. Trend data should be reviewed routinely and any adverse trend should be appropriately investigated. The review of trend data should not only take account the % alert and % actions occurring but also review of the quantitative and qualitative (identifications) raw data.

データの統計学的解析に基づき、適切なアラート限度値を設定すべきである。トレンド・データを 日常的にレビューし、如何なる悪化傾向をも適切に調査すべきである。トレンド・データは、アラ ートを超えた比率、及びアクションを超えた比率 (the % alert and % actions occurring) のみならず、定量的 (訳 注: 菌数) 及び定性的(菌種同定)の生データのレビューも考慮すべきである。

Alerts should be reassessed routinely to enable, where possible, a tightening of those control limits. Increasing of such limits is not good practice and may mask a failing system.

アラートの限度値は、可能な場合にあっては、日常的に再評価すべきであり(should be reassessed routinely)、 その管理限度値を狭めて行くべきである。

7. What are the expectations for preventative maintenance on RO systems used for the production of WFI?

WFIの製造に使用する RO システムの予防的保全についての期待はどの様なものか?

A robust system for preventative maintenance of such systems should be designed as part of a control strategy in order to minimise the risks associated with microbiological and / or by-product proliferation.

微生物の増殖、及び/又は代謝・副産物の産生に関連するリスクを最小とするための管理戦略の一 部とすることで、そのようなシステムの予防的保全のための頑健性のあるシステムをデザインすべ きである。

The planned maintenance system should incorporate routine regeneration of pre-treatment systems, replenishment of resin beds (as required), change out of filters, gaskets, seals and RO membranes at a defined frequency or following adverse indicators as well as routine sanitisation of such systems. Detailed inspection checks should be incorporated into the routine planned maintenance to take account of the potential for the formation of biofilm within the system:

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page22 of 37 pages

計画されたメンテナンス・システムには、そのような(訳注:製薬用水)システムの日常的なサニティ ゼーションは勿論のことであるが、それに加えて次のような要素を組み込むべきである。:

- ・前処理システムの日常的再生 (routine regeneration of pre-treatment systems)
- ・規定された頻度での、あるいは悪化指標が見られた場合の、"(訳注:イオン交換や活性炭などの)樹脂ベッドの交換 (replenishment) (必要に応じて)"、"フィルター、ガスケット、シール及び RO メンブランの交換"。

日常的な計画されたメンテナンスには、詳細な検査によるチェックを組み込むべきである。これは、 当該システム内でのバイオフィルムの形成の可能性を考慮してのことである。

e.g. Inspection for leaks within the system, inspection of the condition of gaskets and seals. 例えば、システム内のリークの検査、ガスケット及びシールの状態の検査などである。

Performance of the RO membrane(s) should also be assessed as part of the routine planned maintenance approach including determination that the pressures and flow rates are in line with the satisfactory operation of the system in order to maintain the quality of water produced to the appropriate standard.

RO メンブラン (単数または複数) の性能もまた、日常的に計画されたメンテナンス・アプローチの一部 として評価をすべきである。これには RO メンブラン (単数または複数) の圧力および流量の測定も含 まれる。その測定は、製造した水の品質が該当する基準への適合を維持するために、そのシステム が十分な運転状態にあることを調べるためである。

EMA(案) 非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)

deadline for comments: 4 November 2016

Page 23 of 37 pages

Part II Biofilms and control strategies (バイオフィルムと管理戦略)

(訳注) バイオフィルムの説明をしているウィキペディアの"バイオフィルム"から、要点を抜き出した。:

身近な例としては、歯垢や台所のヌメリなどがある。自然界にも広く存在し、基質と水があれば、あらゆる場所に存在する。 たとえば、水中の石の表面についている膜状のものなどがあてはまる。バイオフィルム内では嫌気性菌から好気性菌、従属 栄養から独立栄養のものまで様々な種類の微生物が存在し、その中で様々な情報伝達を行いながらコミュニティを形成して いると考えられている。異種微生物間の情報伝達物質としてクオルモンが注目されている。

生態系におけるバイオフィルム

岩石や堆積物、堆積物粒子、植物、大型藻類の表面など、あらゆる場所に存在している。バイオフィルムの内部と外部では、 微生物の生息密度が異なる。たとえば水中では、生息密度に数百~数千倍の差があるという。バイオフィルム内には、細菌 はもちろん、原生動物、藻類など、多種多様な生物が生息している。自然界における物質の転換、浄化作用などにも深く関 与していると考えられている。

大まかな構造

基質に付着した細菌が、細胞外多糖(EPS, extracellular polysaccharide)を分 泌する。 EPS はバリアーや運搬経路の役割を果たし、環境変化や化学物 質から内部の細菌を守る。 そういった作用により、生息密度の高い閉鎖 的なコロニーが形成され、恒常性が保たれる。

バイオフィルムの構造の簡略図

訳文には必ず、誤訳、誤謬そしてタイプミスがあります。訳文は原文を理解するための補助的なものです。この資料に関して、判断や行動をする場合は、必ず原文に基づいて行って下さい。

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page24 of 37 pages

以下は、上記の図の説明

- 1. 細菌付着
- 2. EPS を分泌しはじめる
- 3. バイオフィルムが形成される
- 4. バイオフィルムは厚みを増し、コロニーが巨大化する
- 5. 内部が過密になると、コロニーが破壊され、細菌が放出される

細菌が付着と脱離を繰り返しながら、徐々にバイオフィルムが形成される。バイオフィルムのコロニーには、複数種の微生 物が生息し、動的平衡を保つ。棲む微生物は、環境により異なるが、細菌類以外の微生物が生息している場合も多い。単一 種のみで形成されるコロニーは、自然界には稀である。形成後のバイオフィルムも、常に脱離や溶菌が起こっているため、 安定したものではない。バイオフィルムという呼び名は、極相林のような変遷の終着点というより、形成された後に変化す る形態すべてを指している。ある程度大きくなると、コロニーが崩壊し、細菌が放出される。

1. What is a biofilm? (バイオフィルムとは何か?)

Biofilms occur in both natural and industrial settings. They are ubiquitous.

バイオフィルムは、自然環境および産業的環境の両方で生じる。それらは普遍的に目にする存在で ある。

They can typically be found in air compressor and supply systems, water systems, heat exchangers, RO membranes, ion-exchange resins, piping, O-rings, gaskets and more or less anywhere that an aqueous or moist environment exists.

それらは、一般的にはエアー・コンプレッサーと供給システム (air compressor and supply systems)、水シス テム、イオン交換樹脂 (ion-exchange resins)、配管 (piping)、O リング (O-rings)、ガスケット (gaskets)、及び 多かれ少なかれ、水性や湿った環境の如何なる箇所にも存在する。

Sites for biofilm formation include all kinds of surfaces: natural materials above and below ground, metals, plastics, medical implant materials—even plant and body tissue. Wherever you find a combination of moisture, nutrients and a surface, you are likely to find biofilm.

バイオフィルムの形成部位は、全ての種類の表面が含まれる。: 地表上や地表下の自然の物質、金属、プラスチック、医療移植片 (medical implant materials) – 植物や人体組織でさえ、それらに含まれる。

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page25 of 37 pages

湿度、栄養物及び表面という組み合わせがある場所なら、いずれの場所であっても、バイオフィル ムを見い出すことが出来るだろう。

They are typically a mass or group of varying species of micro-organisms. They are formed when these organisms adhere to the surface in a moist environment. These in turn secrete extracellular polymeric substances (EPS) that act as an anchor to the surface as well as to other micro-organisms of various species. This in turn allows them to develop complex three-dimensional structures or communities. Biofilms typically follow similar routes for formation and spread:

バイオフィルムは一般的に、様々な微生物菌種の塊 (mass) またはグループである。それらの微生物 は、湿った環境での表面に付着すると、バイオフィルムを形成する。それらは次々と、細胞外高分 子物質 (extracellular polymeric substances; EPS *)を分泌する。この EPS は、様々な菌種について、 他菌種に対するアンカー (anchor: 訳注 固定のためのツール) と共に、(訳注:システムの) 表面に対してのアン カーとしても作用する。 EPS は次第に複雑な三次元の構造、あるいはコミュニティー (communities) を発達させ、バイオフィルムの形成を許すことになる。バイオフィルムは一般的に、形成及び拡張 について次のような類似している経路に従っている。:

*: 訳注 EPS を細胞外多糖体(Extra cellular polysaccharides)とする専門書もある。恐らく同一のものと思われる。

- Attachment (付着)
- Colonisation (コロニー化)
- Growth (成長)
- Detachment (離脱)

The development of biofilms on otherwise clean surfaces (i.e., surfaces that are free of organic and inorganic contaminants) proceeds through a 4-step process:

クリーンな別の表面(すなわち、有機物及び無機物からフリーの状態となっている表面)でのバイ オフィルムの形成は、次のような4つのステップを通じて進行する。:

 Sorption of trace organic and inorganic compounds to form a conditioning film, which may serve as an organism recognition factor in the initial phases of attachment. 痕跡量の有機物及び無機物が吸着し、conditioning film (訳注: CF と略記される。微生物が吸着する前の 準備段階の物質がフィルム状に吸着した状態)を形成する。これは、付着の初期段階で微生物にとっての認識の因子として役立つものである。

- A reversible primary attachment, mediated by advective transport processes and/or chemotaxis, which is the movement of an organism in response to a chemical gradient.
 可逆的一次付着。これには移流輸送 (advective transport) プロセス、及び/又は (訳注: 微生物の) 走 化性 (chemotaxis) が介在しており、化学勾配 (chemical gradient; 訳注 物質や電気的な密度勾配を意味すると 思われる) に対応して微生物が動くものである。
- 3. Surface-division also referred to as colonisation. 表面での微生物の分裂 (surface-division) もまた、コロニー化として注意が向けられる
- 4. Synthesis of EPS, which stabilises the sessile population. EPS の合成。これは固着した微生物集団を安定化させることに役立つ

Such biofilm communities can communicate via quorum sensing and in the presence of certain danger or death, induce secretion of protective metabolites within the structure of the biofilm signalling and inducing a form of protection to the layers within the biofilm layer.

そのようなバイオフィルム・コミュニティー (biofilm communities: *1) は、クオラムセンシング (quorum sensing; qs; *2) によりコミュニケートする (*3) ことが出来る能力をもっており、ある種の危険あるいは死 の存在で、バイオフィルム層内の幾つかの層に対して保護を形成するためのシグナルと誘導を行うこ とで、そのバイオフィルムの構造内に保護的代謝物の分泌を誘発させる。

- *1(訳注):バイオフィルムは複数の菌種が、あたかも一つの社会的集団を構成しているように振舞う。これはバイオフィルムでは 種々の環境因子が数µオーダーで勾配をもって変化する微視的環境が形成され、その結果、多様なニッチ(生態学的地位)が生 みだされ、多様な微生物集団が同一のバイオフィルム内に共存できるようになると考えれている。(引用:日本微生物生態学会 バイオフィルム研究部会 編著 『バイオフィルム入門 -環境の世紀のあたらしい微生物像-』、日科技連、2005年、¥2,500 +税:現在、絶版の可能性あり)
 - ・ウィキペヂア Biofilm: <u>https://en.wikipedia.org/wiki/Biofilm</u> (日本語の翻訳もされている)
 - ・(総説)「バイオフィルム研究技術の新展開」: <u>http://www.jseb.jp/jeb/10-01/10-01-019.pdf</u>
- *2(訳注): クオラムセンシングについては、上記*1の引用図書の「VI章 バイオフィルムと微生物間情報伝達」が総合的な知識 を得るために有益である。ウィキペディアの「クオラムセンシング」もまた、参照に便利である。
 - ・(総説)「Quorum Sensing 制御に基づくバイオフィルム形成抑制」: <u>http://www.jseb.jp/jeb/10-01/10-01-015.pdf</u>
- *3(訳注):存在条件が悪化するとある種の化学物質が生成・放出され、それによりバイオフィルム全体が、生存性を高める方向へ と変化するといわれている。

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page27 of 37 pages

Little is understood of the extracellular polymeric substances and metabolites produced by these organisms. Also, little is understood of the cellular debris which remains after cell death. There are no specific Ph.Eur tests specified to test for some of these EPS and metabolites. Some of these include Exotoxins and Bacteriocins (piocins, colicins) as well as endotoxins (for which a number of test methods are prescribed in the Ph.Eur.)

それら微生物により生成される細胞外高分子物質 (extracellular polymeric substances; EPS) 及び代謝物について の理解は、殆ど進んでいない。また、細胞が死滅後に残される細胞残屑 (cellular debris) についての理解 も殆ど進んでいない。それら EPS および代謝物に幾つかについての試験は、欧州薬局方の特定の試験 は存在していない。それら物質のうちの幾つかは、エンドトキシン (endotoxins: 内毒素) (欧州薬局方に は多数の試験方法が述べられている)と共に、Exotoxins (外毒素;*1)及び Bacteriocins (piocins, colicins; *2) が含まれる。

- *1:(訳注)外毒素(がいどくそ、exotoxin)とは細菌が菌体外に放出する毒素の総称であり、その成分はタンパク質あるいはポリ ペプチドである。内毒素が菌種間で毒性が非特異的であるのに対して外毒素の毒性は特異的である。外毒素はホルマリン等 で処理すると毒性を失うが、免疫原性を有するトキソイドとなる。代表的な外毒素として Clostridium perfringensの a 毒素、 破傷風菌、ボツリヌス菌の神経毒、コレラ菌、大腸菌、ブドウ球菌のエンテロトキシンがある。(ネットより転載)
- *2:(訳注) バクテリオシン(Bacteriocin) とは、細菌類が産生する、おもに同種や類縁種に対する抗菌活性をもったタンパク質や ペプチドの総称である。 出芽酵母やゾウリムシのキラー因子と類似している。(ネットより転載) Piocins(ピオシン)とは、細菌が生産する他の近縁の細菌に対しての抗菌物質をバクテリオシンと総称するが、そのうち 緑膿菌 Pseudomonas aeruginosa (旧名 P. pyocyanea) が生産するものがピオシンである。(ネットより転載) コリシン(colicins)とは、大腸菌(Escherichia coli)群の細菌が分泌する抗菌性タンパク質の総称である(ネットより転載)

Current methods of control of bioburden are based on the control of the planktonic organisms present within the system, material or product being tested. Biofilms are typically sessile (attached or fixed) but can also exist in a free flowing form for example during detachment. They can be difficult to identify within a system / process as their presence is usually relatively unknown until such time as an out of specification result occurs. This is because contamination of the water, where part of the biofilm has broken away, may be sporadic and random and therefore not easily detected using "grab" sample techniques.

現在のバイオバーデンの管理の方法は、システム、原材料、又は試験をする製品に存在する浮遊性微 生物を制御することに基づいている。バイオフィルムは一般的に固着性(sessile;付着または固定化さ れている)であるが、例えば剥離(detachment)中に、自由に流れて行く形態(free flowing form)としても存 在することが出来る。(訳注:WFI 製造の)システム/プロセスの範囲内で、それらを特定することは困難 である。というのは、それらの存在は菌数の規格外結果が生じるような時点まで、通常は知ることが

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page28 of 37 pages

出来ないからである。これは、バイオフィルムの一部が剥がれ落ちた場合の水の汚染は、散在的(sporadic) かつランダムであり、それゆえ、"grab"(訳注: "つかみ取る"の意味) サンプリング・テクニックを使用し ては、容易に検出が出来ないからである。

Therefore measures should be taken by manufacturers to firstly, put in place scientifically justified mechanisms for maintaining biofilm control over such systems and processes, and prevent the further formation of such biofilms following proven methods for cleaning and sanitisation.

それ故に、製造業者は、まずは初めにその WFI 製造システムやプロセスの全体にわたって、バイオフィルム制御を維持するための、科学的な論理性を持ったメカニズム (scientifically justified mechanisms) を適切に設定するという方法をとるべきである。そして、それによって、クリーニングとサニティゼーションの立証がされている方法 (proven methods) に従って、そのようなバイオフィルムの更なる形成を防ぐべきである。

2. What approach should be taken to maintain control over systems which can be affected by biofilms?

システム全体にわたって、バイオフィルムに影響を与えられるような制御を維持するためには、どの 様なアプローチをとるべきか?

A control strategy should be developed to assess the risks associated with the current manufacturing processes and to determine acceptability of existing control measures. The effectiveness of the sampling and testing regimes employed at the site should also be critically assessed in conjunction with the development of a control strategy.

管理戦略を制定すべきであり、その管理戦略とは、現在のWFI 製造プロセスに係るリスクをアセス メントして、既存の管理方法の受容性 (acceptability) を調べるというものである。当該製造所で使用し ているサンプリング及び試験の形態 (regimes) の有効性を、管理戦略の制定と組み合わせた形で、批判 的にアセスメントをすべきである。

訳文には必ず、誤訳、誤謬そしてタイプミスがあります。訳文は原文を理解するための補助的なものです。この資料に関して、判断や行動をする場合は、必ず原文に基づいて行って下さい。

EMA (案)非蒸留法による注射用水の製造に係るQ&A (逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page29 of 37 pages

3. What is a control strategy in the context of biofilm and contamination control? バイオフィルムと汚染制御の関連付における管理戦略とは、どの様なものか?

A control strategy should take account of the design of the process, the mechanisms required to be put in place to control and ultimately prevent or minimise the risk of contamination.

管理戦略は、次の点を考慮すべきである。:

- ・WFI 製造プロセスのデザイン (訳注:精製プロセスの原理や構造設備)
- ・制御を適切化するために必要とされるメカニズム
- ・最終的に、汚染のリスクを防ぐか、あるいは最小化する

Such a strategy requires the following thorough process knowledge and understanding taking account of all aspects of contamination control and prevention, including:

そのような管理戦略は、以下に述べるような事項の考慮を必要とする。それらは汚染の制御と防止の 全ての側面を考慮して、プロセスのナレッジ(知識)と理解を通して行うことが必要である。次の事 項が含まれる:

• Design – plant, process (the water system should be specifically designed to avoid dead legs, allow full drainage and minimise roughness)

設計 ー プラント、プロセス (水システムは、デッデレッグ (dead legs) を避け、完全な排水(full drainage)を可能とし、かつ粗さ (roughness: 訳注:水と接触する表面の粗さ)を最小とするように、特別に設計すべきである。)

- Control including in-process controls (管理 工程内管理を含む)
- Monitoring systems (モニタリング・システム)
- Prevention Investigations / CAPA /root cause determination. Robust investigational tools are required
 予防的事項 調査/CAPA/根本原因の決定。頑健性のある調査ツールが必要とされる。
- Raw Materials (原料: 訳注 原水の事か?)
- Preventative maintenance Maintaining equipment and premises to a standard that will not

EMA (案) 非蒸留法による注射用水の製造に係るQ&A (逆浸透とバイオフィルム、及び管理戦略)

deadline for comments: 4 November 2016

Page 30 of 37 pages

add significant risk from a contamination view point 予防的保全 – 汚染という視点からの重大なリスクを加えることのない基準に適合する ような、機器と施設に対するメンテナンス

- Equipment and facilities (機器と施設)
- Process qualification (プロセスの適格性評価)
- Personnel (職員)
- Utilities (用役)
- Cleaning / sanitization (クリーニング/サニティゼーション)

Contamination control and steps taken to minimise the risk of contamination are a series of successive linked events / measures. These are typically assessed, controlled and monitored in isolation. Quality Risk Management tools along with scientific judgement can be applied in determining critical control points.

汚染のリスクを最小化するためにとるべき、汚染の制御とそのステップは、上手くいった事例/方法 (a series of successive linked events / measures)の「関連付がされた一連の集まり」となる。一般的に、アセスメ ントの実施、制御及びモニターは、独立して存在している。科学的判断 (scientific judgement) に加えて、 品質リスクマネジメントの手法を、重要管理点 (critical control points)を決定するために使用することが出 来る。

A contamination control strategy would integrate all of these measures to ensure a more comprehensive approach is taken with respect to prevention and control of microbiological contamination.

汚染管理戦略は、微生物汚染の防止と制御に関して、より広範なアプローチをとれることを保証する ために、それらの方策の全てを統合化するものになるであろう。

Such a strategy should lead to the introduction of a control programme which is an iterative process taking into account all information throughout the lifecycle of the products and processes.

そのような戦略は、管理プログラムを導入することで行うべきである。その管理プログラムは、その

EMA(案) 非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)

deadline for comments: 4 November 2016

Page 31 of 37 pages

製品 (訳注: WFI) 及びプロセスのライフサイクルを通じて、全ての情報を考慮しながら、繰り返しそれ を行いながら確立する、というものとなる。

訳者注:

長年の製薬用水製造設備の微生物制御の経験からは、上記の考え方は、かなり不十分である。WFIの製薬用水製造設備は、一つの単純化された生態系と見ることが重要である。ポイントを列挙すれば、以下の通りである。

- ・ 製薬用水製造設備を、単純化された一つの生態系とみること。
- ・ 微生物が増殖すること、およびバイオフィルムの存在を考えると、「数(菌数)」の情報に基づく管理は、製薬用水製造設備の微生物管理を考える上で、極めて非効率な管理ツールである。
- 「製薬用水製造設備を、単純化された一つの生態系と見なす」ことは、「その生態系に加えられる制御の状態が、出現菌種 を決定付ける」という、方法論をとることを意味する。
- すなわち、構造設備の変更、あるいはサニテーション/消毒方法は、菌種あるいは菌種構成の変化と連動している。換言す れば、構造設備や、サニテーション/消毒方法の変更が有効であることは、一般的に菌種あるいは菌種構成の変化として捉 えることが出来る。これらシステムの微生物制御は、常に「質(菌種)」の情報を必要とするものであり、「量(菌数)」で はない。
- 製薬用水製造設備という生態系であっても、生物学における「多様性安定性の原則」は常に成り立つ。出現微生物の菌種が 多いことは生態系として安定していることを意味する。つまり、製薬用水製造設備に加えられている微生物制御が「効果的 はない」ことを意味する。生態系に制御が加われば、生態系の構成は単純化し、より強い制御であれば、菌が特定の菌種(多 くの場合は、*Methylobacterium* spp.) い収束し、さらに強い制御を加えることで微生物も検出されることもなくなる。

ただし、注意しなければいけないことは、メンブランフィルター法などでの生菌数試験で、一フィルター上の捕集菌数 があまりにも多い(例えば 200 CFU/filter)と、成長の早い微生物の菌種が表面を覆い、他の微生物の生長を抑制してしま う。そのような状態になると、培養結果を、菌種構成が単一であると誤って判断することになる。

もう一つの問題は、培養法は試料中に存在する全ての瀬生物を検出できないということである。これは培養基と培養条件 が係る問題であり、培養法の論理的な限界といえるものである。微生物群集の解析という点からは、次世代の DNA シーケ ンサー技術に期待されるところである。(<u>https://www.jstage.jst.go.jp/article/jslab/23/1/23_24/_pdf</u>)

- 構造設備上、あるいは試験技術上で最も重要な問題は、サンプリング・ポートを経由して分析用のサンプルを採取するということである。正確な微生物汚染管理は、この「サンプリング・ポート部分の汚染を如何にして排除するか」が最も重要なテーマである。単純計算を行えば簡単に理解することが出来るが、製薬用水中での微生物の分裂速度、製造される時間当たり水量、消費量を基に計算した推定菌量(単位液量:例えば1mL当たりの菌数)は、かなり小さいものである。この値は、サンプリングした水の菌数からの推定値とは非常に大きな乖離がある。これは、サンプリング・ポート部分に微生物汚染が存在することが原因すると思われる。メイン配管を流れている水における真の菌数をするような、不断の努力が必要である。
 製薬用水製造システムにおける微生物の増殖リスクの高い箇所は、「固液界面の面積の大きな箇所」であり、かつ「"静かな"世界(水流などによる動圧などの物理的なストレスが非常に少ない箇所)」である。この2条件を同時に満たす箇所は、イ
 - オン交換樹脂表面、ろ過膜である。「"静かな"世界」としてはデッド・レグや、サンプリング・ポート部分の局所的構造が ある。

上記の例外は EDI 装置である。これは EDI のイオン交換樹脂が荷電しているために、樹脂に接している微生物の代謝系

EMA(案) 非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)

deadline for comments: 4 November 2016

Page 32 of 37 pages

がうまく機能しなくなり、殺菌的に作用することによる。しかし、EDI 装置を停止させたことにより樹脂表面にバイオフィ ルムが形成されると、EDI 装置は微生物汚染源となる。

- 製薬用水の水システム評価において、理化学的試験項目の試験サンプルは製薬用水の分配系の何れから採取しても、大きな 品質的な変動はない。それに反して微生物のサンプルは分配系の何処から採取するかで、大きく菌数と菌種が変化する。ほ ぼ同じ菌数であっても、菌種が異なることは良く見られる。
- 微生物学的サンプルの場合は、菌種と菌数(桁数の違いがあるか否かの粗い評価)で組合せをして評価する必要がある。 この場合、最も大切なことは「そのサンプリング・ポートから採取した水で見られた菌種と菌数は、何を意味するか?」と いう視点である。これはリスクアセスメントを通して考えるべき事項でもある。

4. If a biofilm exists what steps can be taken to eradicate or remove it?

もしバイオフィルムが存在しているのであれば、それを絶滅させたり、取り除いたりすめに、どの様 なステップを取るべきか?

The approach is both chemical and physical removal. When sanitising systems in this manner it is important to ensure that the systems are in recirculation mode and the sanitising agents utilised are not introduced into a system and left to exert their mode of action in a passive mechanism. Any approach to biofilm removal needs to be an active in operational strategy.

そのアプローチには、化学的な除去、及び物理的な除去という2つのアプローチがある。この方法で システムをサニタイズする場合は、そのシステムが再循環モード (recirculation mode) にあり、使用するサ ニタイズの薬剤が、システム内に入っていかないようになっており、そして、受動的なメカニズムで その作用モードを及ぼすようにすることが重要である。バイオフィルムを取り除くための如何なるア プローチも、運営戦略 (operational strategy) において積極的であることが必要である。

Use of chemical sanitising agents should be incorporated into a control strategy. While the utilisation of a hot water flush through systems is considered somewhat acceptable in order to minimise the planktonic contaminants existing within a system, it is known not have a significant effect on biofilms, which typically do not exist in a planktonic form, but usually in a sessile or attached form.

管理戦略に、化学的サニタイジング剤の使用を組み込むべきである。システム内に存在する浮遊して いる汚染菌 (planktonic contaminants) を最小とするために、システム全体を通しての熱水フラッシュ (hot water flush)の利用を考えるべきではあるが、バイオフィルムへの大きな効果を持つことは期待できない。と いうのは、バイオフィルムは浮遊形態で存在するのではなく、通常は固着または付着という形態 (sessile

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page33 of 37 pages

or attached form) をとっているからである。

The ideal mode of action of chemical sanitising agents in the context of biofilm is to both penetrate and provide the appropriate kill to the organisms in question.

バイオフィルムとの関連付で、化学的サニタイジンズ剤の作用の理想的なモードは、問題とする微生 物にまで浸透して、適切な死滅を与えることである。

Appropriate removal of cellular debris should also be considered, as excessive debris can result in increased levels of endotoxin / exotoxin etc. existing within the system.

細胞残屑の適切な除去もまた考慮すべき事項であり、過剰な細胞残屑が存在することは、そのシステム内に存在する endotoxin / exotoxin (内毒素/外毒素) などのレベルの増大を生じさせる。(*)

*:(訳注) エンドトキシンは単一な物質ではなく、グラム陰性菌の菌種によって異なり、それに伴い、エンドトキシン活性も大き く異なる。現在の標準エンドトキシンは、大腸菌由来のものである。この標準エンドトキシンに対して、菌種によっては、比 率として 1000 倍あるいは/1000 程度の活性の異なりが存在する。過去の実験では、複数の菌種が存在する用水の菌数が、おお よそ "<u>1000 cell/mL</u>"程度となると、0.25 EU/mL の感度を持つライセイトが凝固を起こすことが報告されている。これを単純 計算すれば1菌体当たりのエンドトキシン量(大腸菌の活性換算)は、「2.5×10[^](-4) EU/cell」となる。

経験則(下記引用参照)では1 EU は、100 pg (0.1 ng)である。かなり以前では、1 菌体あたりのエンドトキシン量(大腸菌を ベースとして)150 femtogram (150×10⁽⁻¹⁵⁾g)と言われていた。この値を1000 倍すると 0.15 ng となる。すなわち、この150 femtogram のエンドトキシン(質量)は妥当なものといえる。

したがって、1 菌体当たりの平均的 EU 量(大腸菌のエンドトキシン活性に変換したとき)に、この2つの値は、

(0.15~2.5)×10⁽⁻⁴⁾ EU/cell の範囲を示しており、この付近にグラム陰性菌の1細胞当たりの平均的なエンドトキシン量があると推測される。

(上記の引用部分)

For example, 100 pg of the standard endotoxin EC-5, 200 pg of EC-2 and 120 pg of endotoxin from Escherichia coli 0111:B4 have an activity of 1 EU. It is taken as a rule of thumb that 1 EU corresponds to 100 pg of endotoxin.

http://www.protocol-online.org/biology-forums/posts/1380.html

Frequent, rotation of disinfectants & detergents and inclusion of sporicidal agents should be considered as part of a robust strategy.

しばしば、消毒剤・洗浄剤のローテーションと、殺芽胞剤を含めることは、頑健性を持つ戦略 (robust strategy) として採用を考慮すべきである。

It should be noted that once a biofilm has been established it may be difficult to remove even using the methods above. Any biofilm removal should be followed by a period of intense monitoring before returning the system to use to ensure that the biofilm has been effectively removed.

ひとたびバイオフィルムが確立してしまったならば、上述の方法を使用しても、それを取り除くこと は困難であることに注意すべきである。如何なる場合のバイオフィルム除去も、バイオフィルムが効 果的に除去されたことを確認するために、真剣な (intense) モニタリングの期間を設け、その後にシス テムを使用状態に戻すべきである。

A robust preventative maintenance programme is essential in order to maintain equipment and premises to a standard that will not add significant risk from a contamination viewpoint. Consider regular inspection of utilities, process equipment and transfer lines for obvious signs of deterioration –O-rings, gaskets, seals – regular inspection and replacement.

頑健性のある予防的メンテナンス・プログラムは、「汚染という観点から重大なリスクを加えない」 という基準に対して、機器や設備を維持するための必須の事項である。劣化 (deterioration) の明確な兆 候があるかについて、ユーティリティ (用役)、プロセス機器、及び移送ラインの定期的な検査を考慮 すべきである。それらは、Oリング(O-rings)、ガスケット(gaskets)、シール(seals)などがあり、定期的な検 査と交換を考慮する。

5. What specific agents can be used as part of a control strategy? 管理戦略の一環として、どのようなエージェント (agents; 作用素) が使用できるか?

Examples include Sodium Hypochlorite, Hydrogen Peroxide / Peracetic acid solutions. Appropriate contact times need to be established.

その様な事例としては、次亜塩素酸 (Sodium Hypochlorite)、過酸化水素/過酢酸溶液 (Hydrogen Peroxide / Peracetic acid) が含まれる。

Ozonation should also be considered for water systems.

オゾン化もまた、水システムに考慮すべきである。

EMA(案)非蒸留法による注射用水の製造に係るQ&A(逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page35 of 37 pages

Use of high temperature or steam sanitisation where possible should also be considered.

可能な場合には、高温度あるいはスチームのサニティゼーションもまた考慮すべきである。

A singular approach to sanitisation is not an acceptable approach in order to minimise the risks of biofilm formation. In that regard an approach that utilises a minimum of a double-edged approach should be considered, e.g. high temperature in conjunction with a chemical sanitisation at a set frequency based on risk assessment.

サニテーションをどれか一つだけのアプローチで行うことは、バイオフィルム形成のリスクを最小化 するための許容されるアプローチではない。使用するアプローチに関しては、少なくても double-edged approach (訳注: "サニティゼーションの性質の全く異なった2つのアプローチ"という意味)を考慮すべきである。例え ば、リスクアセスメントに基づいた設定頻度で、化学的サニティゼーションと組み合わせた形での高 温度の使用が挙げられる。

6. Are there any additional measures which should be considered in order to increase the probability of detecting the presence of biofilms?

バイオフィルムの存在の検出確率を上げると考えられるような、追加的方策は存在するか?

A robust sampling plan is a requirement. Such a sampling plan forms part of the control strategy employed to minimise such risks of biofilm and general contamination issues. Each potential source of contamination should be incorporated into such a sampling regime. The effectiveness of an environmental monitoring programme should be formally assessed at minimum on an annual basis.

頑健性のあるサンプリング計画が必要となる。そのようなサンプリング計画は、バイオフィルム及び 一般的な汚染の問題点のリスクを最小とするために使用する管理戦略の一部を形成するものである。 汚染に関してのそれぞれの可能性ある各原因を検知できるような仕組みを、そのようなサンプリング 体制 (sampling regime)の中に組み込むべきである。環境モニタリング・プログラムの有効性は、少なく ても年次ベースで正式にアセスメントをすべきである。

Sampling programmes for water systems should take account of the quality of the water supply to the system as well as assessing points throughout water generation. User points should be tested

each day of use in order to provide additional assurance of the quality of water utilised in the manufacturing processes.

製薬用水システムのサンプリング・プログラムは、製薬用水製造(water generation)を通してのポイント (訳注: "要点"の意味であろう)を評価すると共に、そのシステムへの水供給の品質(quality of the water supply: (訳 注)原水の品質を述べていると思われるが、その供給体制も含んでいる可能性がある)も考慮すべきである。ユースポイ ント(user points:使用箇所)は、製造プロセスに使用する水の品質の追加的保証を与えるために、 各使用日について試験を行うべきである。

Routine identification of contaminants isolated during monitoring activities is critical in order to ascertain if there is any shift or change in the flora present within a facility or if certain specific species become more prevalent.

モニタリング活動中に分離された汚染菌の日常的同定は、次の点を究明するために非常に重要である。:

①当該設備内に存在する微生物菌相 (flora) の、何らかのシフトあるいは変化が生じているか? ②ある特定の菌種が、より優勢な菌種(more prevalent)となっていないか?

訳注:上記の文章は"identification"(同定)とあるが、現実には日常試験で検出された微生物コロニーを全て同定することは不可能 であり、また現実的ではない。USP の<1113> MICROBIAL CHARACTERIZATION, IDENTIFICATION, AND STRAIN TYPING (下記のリンク)における CHARACTERIZATION(特徴付け)の考え方を適用すべきであろう。

http://www.drugfuture.com/pharmacopoeia/usp35/data/v35300/usp35nf30s0_c1113.html

製薬用水製造システムのように、比較的閉じられたシステムであって、なおかつかなりの微生物学的制御がされている場合の生態系は、その管理状態に変化がない限り、出現する微生物菌種は安定している。したがって、通常の管理では、まずはコロニーの外観により類別して、その数を記録する。その類別した代表的コロニーに対して、細胞形態と簡単な生化学的検査で以前の特徴付け(characterization)の分類を一致するかを確認することで、システム上の微生物制御は充分に実用に耐えるものである。

それとは別に、この特徴付けに関連付する形で同定(Identification)の運営プログラムを制定する必要がある。特徴付け (characterization)は、それを行う者の技量に大きく左右されるのみならず、特徴付けが同じであっても、同定結果が同じ であるかは不明だからである。

重要なことは、これらの特徴付けによる微生物の出現構成比と変動、そして菌種の同定結果というデータを、如何に して整理し、役立てて行くかである。すなわち製薬用水スステムの微生物制御は、検出された微生物を微生物群集として とらえ、その制御を考えることにその真の対応の方向性がある。

Use of more sensitive endotoxin detection methods should also be taken into account. Alert limits should be set based on the capability of the system and any change or adverse trend should be

EMA (案)非蒸留法による注射用水の製造に係るQ&A (逆浸透とバイオフィルム、及び管理戦略)deadline for comments: 4 November 2016Page 37 of 37 pages

appropriately investigated.

エンドトキシンのより鋭敏な検出方法の使用もまた、考慮に入れるべきである。当該(訳注:WFIの)シ ステムの能力と、何らかの変化に基づき、アラート限度値を設定すべきであり、悪化傾向(adverse trend) を適正に調査すべきである。

訳注: Part II Biofilms and control strategies の第4項に、グラム陰性菌の1細胞あたりのエンドトキシン活性量の情報を掲載しているので、必要に応じて参照されたい。

The frequency of trend analysis and use of trend data is critical.

トレンド分析の頻度とトレンド・データの使用は、非常に重要 (critical) である。

Taking into account the speed at which organisms can proliferate, the use of rapid microbiological test methods and systems should be employed in order to improve or increase the probability of early detection and allow timely action to be taken.

微生物が増殖する速度を考慮に入れて、早期の検出と確率を改善あるいは高めて、タイムリーなアク ションを許すために、迅速微生物学的試験方法とそのシステムの使用を使用すべきである。

(End Of File) 2016年08月22日訳了